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Abstract. We propose a new smoothing Newton method for solving the Py-matrix linear comple-
mentarity problem (Py-LCP) based on CHKS smoothing function. Our algorithm solves only one
linear system of equations and performs only one line search per iteration. It is shown to converge
to a Py-LCP solution globally linearly and locally quadratically without the strict complementarity
assumption at the solution. To the best of author’s knowledge, this is the first one-step smoothing
Newton method to possess both global linear and local quadratic convergence. Preliminary numerical
results indicate that the proposed algorithm is promising.
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1. Introduction

We consider the Py-matrix linear complementarity problem (Po-LCP) of finding
a vector (x, y) € R" x R" such that

x>0, y>0 xTy=0 Mx+4+g—y=0, (1.2)

where the matrix M € R"™" is a Py-matrix and the vector ¢ € R". A matrix
M € R™" is said to be a Py-matrix if all its principal minors are nonnegative.
An LCP is called a Py-LCP if the involved matrix M is a Py-matrix. The class of
the Py-LCP includes the monotone LCP and the P-matrix LCP. LCP has various
important applications in many fields [12,19]. In the past few decades, it has been
studied extensively; e.g., see [2-5,8,9,18,23] and references therein. In this paper,
we are interested in developing a smoothing Newton method to solve the Py-LCP.
In general, a smoothing Newton method uses a smooth function to reformulate
the problem concerned as a family of parameterized smooth equations, solves the
smooth equations approximately by using Newton method per iteration. By redu-
cing the parameter to zero, it is hopeful that a solution of the original problem can
be found.

Recently, the idea of using smooth functions to solve the nonsmooth equation
reformulation of complementarity problems and related problems has been studied
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actively. The methods proposed so far can be classified into two related classes:
smoothing Newton methods and non-interior continuation or path-following meth-
ods. They have attracted a lot of attention due to their convenience and numerical
implementation. Indeed, it has been demonstrated that many of them are superior
to interior-point methods in terms of numerical performence; see Billups et al. [1].
We review some of the important progresses made related to the methods. Smale
[32] first studied the smoothing Newton method for solving linear programming
and LCP. Chen and Harker [4] first introduced a non-interior continuation method
for solving the LCP with a Py and Ry matrix. They concentrated on establishing
the properties of the smoothing path. Later, Kanzow [21] improved the method
by refining the smooth function, referred as Chen-Harker-Kanzow-Smale (CHKS)
smooth function, which was generalized by Chen and Mangasarian [9], and Gab-
rial and Moré [15]. Burke and Xu [3] introduced the concept of neighborhood of
smoothing path into their continuation method, which allowed their algorithm to
establish a global linear convergence result for the monotone LCP. Chen and Xiu
[7] improved Burke-Xu’s algorithm by simplifying the definition of neighborhood
and adding an approximate Newton step to obtain a local quadratic convergence
result. Later, Burke and Xu [2] presented two predictor-corrector-type non-interior
continuation methods for the monotone LCP and also obtained a local quadratic
convergence result. It should be noted that [2, 7] need both the strict comple-
mentarity and the uniform nonsingularity assumptions to ensure the local superlin-
ear (quadratic) convergence. To delete the nonsingularity assumption, Tseng [34]
studied the local quadratic convergence of general predictor-corrector-type path-
following methods for monotone NCPs via the error bound theory. Engelke and
Kanzow [13, 14] further investigated the methods given in [34] and proposed two
predictor-corrector path-following methods for linear programming. However, the
algorithms given in [13, 14, 34] depend strongly on the strict complementarity
assumption. Chen et al. [10] discovered the Jacobian consistency property for the
Gabrial and Moré smooth function family and first developed a globally and su-
perlinearly convergent smoothing Newton method without strict complementarity.
Chen and Chen [6] proposed a non-interior continuation method for Py + Ry NCP
and monotone NCP with a feasible interior point. By introducing a procedure to
update the neighborhoods of the smoothing path, they obtained both global and
local superlinear convergence under nonsingularity assumption. Very recently, a
class of new smoothing Newton methods were proposed by Qi-Sun-Zhou [29]
for NCPs and box constrained variational inequalities. It was shown to possess
fast local convergence without the strict complementarity. Very encouraging nu-
merical results of the method were reported in [35]. Due to its simplicity and
stronger numerical results, the method has also been used to solve other problems
[18, 26, 27, 33]. Among them, Huang et al. [18] proposed a smoothing algorithm
for LCP. It was proved to converge to Py-LCP solution sub-quadratically under a
nonsingularity condition and to monotone LCP solution quadratically under strict
complementarity. Lastly, Chen and Xiu [5] presented a non-interior one-step con-
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tinuation method for monotone LCP, which is a modified version of Burke-Xu [2]
framework of the non-interior predictor-corrector path-following method. It was
proved that Chen-Xiu’s algorithm converges globally linearly and locally super-
linearly if monotone LCP has strict interior point and nonsingularity assumptions
hold for all limit points of its iteration sequence. It should be point out that the
nonsingularity assumption used in [5, 6, 18, 29] imply that the solution set is a
singleton, but do not imply the strict complementarity holds.

It is worth mentioning that most non-interior continuation methods, e.g., [2,4—
7,30], achieve often both global linear and local superlinear (quadratic) conver-
gence. However, only the local superlinear (quadratic) convergence is reachable
for most smoothing Newton methods, e.g., [10, 11, 18, 22, 29, 26, 33]. In general,
the global linear rate of convergence is not easily obtained without some extra effort
[28]. In this paper, we establish a new smoothing Newton method for solving the
Py-LCP (1.1) based on CHKS smoothing function. The proposed algorithm has the
following good properties: (i) it needs only to solve a linear system of equations
and perform one line search at each iteration. (ii) It is well-defined and we can get
a solution of (1.1) from any accumulation point of the iteration sequence generated
by the algorithm. In addition, the iteration sequence is bounded if the solution set
of (1.1) is nonempty and bounded. (iii) If an accumulation point of the iteration
sequence satisfies a nonsingularity assumption, then the whole iteration sequence
converges to the accumulation point globally linearly and locally quadratically
without the strict complementarity assumption. Note that our algorithm design is
based on the Qi-Sun-Zhou algorithmic framework [29] and is motivated by the
idea of the algorithm given in [5]. However, different from them, we use a term
oxuy into the perturbed Newton equation. This allows our algorithm to have the
convergence result (iii), which is not satisfied for most existing smoothing Newton
methods [10, 11, 22, 26, 33]. Hence, compared to some previous literatures, e.g.,
[5], our smoothing Newton method holds much better convergence results under
weaker assumptions. In particular, to the best of our knowledge, this is the first one-
step smoothing Newton method for the Po-LCP to have the convergence property
(iii). We implement the proposed algorithm for several standard test problems by
a MATLAB code. The preliminary numerical results indicate that the algorithm is
promising.

The rest of this paper is organized as follows. We develop a new smoothing
Newton method for solving the Py-LCP (1.1) in the next section. In Section 3,
we show its global convergence. In Section 4, it is proved that if an accumulation
point of the iteration sequence satisfies a nonsingularity assumption, then the whole
iteration sequence converges to the accumulation point globally linearly and locally
quadratically in absence of strict complementarity. Some numerical results and
conclusions are given in Sections 5 and 6, respectively.

The following notions will be used throughout this paper. All vector are column
vectors, the subscript T denotes transpose, R" (respectively, R) denotes the space
of n-dimensional real column vectors (respectively, real numbers), R’} and R’ ,
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denote the nonnegative and positive orthants of R", R, (respectively, R, ) denotes
the nonnegative (respectively, positive) orthant in R. We define f := {1, 2, --- , n}.
For any vector u € R", we denote by diag{u; : i € 4} the diagonal matrix whose
ith diagonal element is u; and vec{u; : i € {4} the vector u. For simplicity, we
use (u, v) for the column vector (u”, v7)T. The matrix I represents the identity
matrix of arbitrary dimension. The symbol | - | stands for the 2-norm. For any
a, B € Ry, a = O(B) (respectively, « = o(8)) means «/8 is uniformly bounded
(respectively, tends to zero) as 8 — 0.

2. A New Smoothing Newton Method for Py-LCP

Our smoothing Newton method is based on Chen-Harker-Kanzow-Smale (CHKS)
smoothing function [4, 21, 32] ¢ : R® — R defined by

¢(a,b, ) =a+b—+/(a—b)?2+4u2, w>0. (2.1)

Letz := (x,y, u) € R x R?* and

Mx+qg—y
H) :=Hx,y,n):=| ®x,y.pn) |, (2.2)
o
where
d)(-xl’ Y1, /’L)
D(x,y, u) = :
& (Xns Yns 1)

Obviously, ¢ (a, b, 0) is just minimum function with the following property
¢a,b,0)=0<=a>0, b>0, ab=0. (2.3)
Thus, the Py-LCP (1.1) is equivalent to the following equation
H(z) =0 (2.4

in the sense that their solution sets are coincident.

It is well known that the function ¢ (a, b, 1) is strongly semismooth on R3,
which plays an important role in our local convergence analysis. The following
lemma is useful in our later analysis.

LEMMA 2.1. (a) H iscontinuoudly differentiable at any z = (x, y, u) € Ry X
R?" with its Jacobian

M —I 0
H'(z) = | Di(z) D2(z) v(z) |, (2.5)
0 0 1
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where

Di(z) := diag{l — (x; — y)/v/ (i —y)2+4u?: i€},
Dy(2) = diag{l+ (x; — y)/v/ (i —y)2+4u?: i€ d},
v(z) = vec{—4,u/\/(x,- —y)2+4u?: ied}

If M isa Py-matrix, then the matrix H'(z) isnonsingular on R, x R?".
(b) H isstrongly semismooth at any z € R?'+1, andthenfor any V € d H (z+h),
h — 0, it follows that

IH(z+h) — H(z) = Vh| = O(|h]*).

Proof. It is not difficult to see that (b) holds and H is continuously differentiable
on R, x R?". Forany u > 0, astraightforward calculation from (2.2) yields (2.5).
Obviously, 0 < (D1(2));i < 2and 0 < (Dy(z));; < 2foralli € 4. Then we obtain
that D1(z) and D;(z) are positive diagonal matrices. Since M is a Py-matrix, by
Theorem 3.3 in [4], the matrix D1 (z) + D2(z) M is nonsingular, which implies that
the matrix H'(z) is nonsingular. Therefore, (a) is proved. We complete the proof of
this lemma. a

Now we give our one-step smoothing Newton method for the Py-LCP (1.1)
Algorithm 2.1: (A new one-step smoothing Newton method)

Step 0. Choose B,8,0 € (0,1) and o € R, ,. Let og := min{o, o} and x° ¢
R" be an arbitrary point. Let y° := Mx% + g and z° := (x°, y°, pg). Set
k :=0.

Step 1. If |H(Z")| = 0, stop.
Step2. Compute Azt := (Ax¥, Ay¥, Apy) € R¥*1 by

HE) + H' (A = ( 0 ) : (2.6)

Ok Mk
Step 3. Leti; :=max{6"|m =0,1,2,---}such that
IH @+ MmAZ)) < 11— BA — o)A H D] (2.7)

Step 4. SetzF*!:= XK+ A Azkand k := k + 1. Go to Step 1.

REMARK. Algorithm 2.1 is motivated by the idea of [5] and is based on the
algorithmic framework given in [29]. The main feature of Algorithm 2.1 is that
we use the term o, = min{o, wu,} into the perturbed Newton Equation (2.6), which
is very different from the algorithms given in [5] and [29]. This allows Algorithm
2.1 to have both global linear and local quadratic convergence without the strict
complementarity assumption, which is not satisfied for most existing smoothing
Newton methods [10, 11, 22, 26, 29, 33]. In addition, just as the Qi-Sun-Zhou
algorithm, Algorithm 2.1 solves only one linear system of Equations (2.6) and
performs only one Armijo-type line search (2.7) per iteration.
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THEOREM 2.2. Algorithm 2.1 is well-defined and generates an infinite sequence
{2 = (xF, vk, w)y with 0 < puegs < e < o and Mx* 4 g = y* for all k > 0.

Proof. If u; > 0, then it follows from Lemma 2.1 (a) that the matrix H'(z*) is
nonsingular. Hence, Step 2 is well-defined at the k¢4 iteration. For any A € (0, 1],
define

r(d) = HEZ 4+ aAZY — HEY — AH (29 AR (2.8)
It follows from (2.6) that
App = —(1 — o) pxe. (2.9)

Hence, for any A € (0, 1], we have
ik + AA g = (1 — M py + Aoy > 0,

which implies from (2.2) and Lemma 2.1 that H(-) is continuously differentiable
around z*. Thus, (2.8) implies that

)1 = o(A). (2.10)
Hence, by (2.6), (2.8) and (2.10), we obtain for any 1 € (0, 1] that
IH @ +2AZ91 < Ir)ll + @ = MIH )] + Aok
< 1= QA= oAIHEH] + o),
which implies that there exists a constant A € (0, 1] such that
IH (& +2AZ9) < [L = (L — oAl H &

holds for any A € (0, A]. This shows that Step 3 is well-defined at the k¢4 iteration.
Therefore, by (2.9) and Step 34, we have A, € (0, 1] and

i1 = (I = A px + Agorpy > 0.
On the other hand,

vt < [1— A = o)Al < px.
Thus, from wg > 0 and the above statements, we obtain that Algorithm 2.1 is well-
defined and generates an infinite sequence {z¥ = (x¥, y*, ux)} with 0 < ppp1 <
e < o forall £ > 0. In addition, by (2.6), we have

MAx* — AyF = —(Mx* + g — ¥5).
Hence, we can complete the proof by the fact Mx° + ¢ = y° and induction on k. O

3. Global Convergence

By Theorem 2.2, Algorithm 2.1 generates an infinite sequence {z*}. In this
section we show that any accumulation point of the iteration sequence {z*} is a
solution of the equation (2.4). Further, if the solution set is nonempty and bounded
then the sequence {z*} is bounded and hence has an accumulation point.



GLOBAL LINEAR AND QUADRATIC ONE-STEP SMOOTHING NEWTON METHOD FOR Py-LCP 369
ASSUMPTION 3.1. Thesolution set of the Py-LCP (1.1) isnonempty and bounded.

Note that Assumption 3.1 is the weakest among the existing conditions used to
ensure the boundedness of the iteration sequence; see [17].

LEMMA 3.2. Let {zF = (x*, y*, up)} be the iteration sequence generated by
Algorithm 2.1. Then {u,} converges to zero.

Proof. By Theorem 2.2, {1} is monotonically decreasing. Then, there exists
2 > 0 such that

lim u, = /:L
k— 00

If i = 0, then the conclusion holds. Suppose that i1 > 0, then we have g > wur >
i > 0 by Theorem 2.2. In this case, by the definition of CHKS smoothing function
and similar to the proof of Proposition 2.1 in [33], we can show that || # (z%)|| — oo
as || (x¥, y)|| — oo. Hence, the iteration sequence {z*} is bounded and has at least
one accumulation point z* = (x*, y*, uy) With u, = & > 0and || H (z%)| = us >
0. Subsequently without loss of generality, we may assume that {z*} converges to
z*. Then, it follows from (2.9) and Step 4 that

Mis1 = i + MAZE < [1— 1 — o),

which implies that lim;Ar = 0by 0 < o < 1and u, > 0. Set 7, := A;/3.
Then, on one hand, it follows from (2.7) that

IH (" + 1A > [1— B —o)nl | H . (3.2)
Since |H(z")|| > 0, let k - oo in (3.1), we have

H@E)"H' (A" > =B — o) || H |2, (3.2)
where o,, = min{o, u,}. On the other hand, by (2.6), we have

HE)'H (A = —|HE)|? + ounl < =1 — o) [ H (D%, (3.3)

where the inequality follows from the fact ||H (z*)|| > .. It follows from (3.2)
and (3.3) that

—(1 =) HEY? = —BA — o)l H I (3.4)

Since |H(z®)| > 0and 0 < o, < o < 1, (3.4) implies that 8 > 1, which is
contracted with the fact 8 < 1. Therefore, we have u, = 0. That is, u, tends to
zero as k — oo. We complete the proof. O

THEOREM 3.3. Let {z*¥ = (x*, y*, uy)} be the iteration sequence generated by
Algorithm 2.1. If Assumption 3.1 is satisfied, then {z*} is bounded and hence it has
at least one accumulation point z* = (x*, y*, ) with H(z*) = 0 and (x*, y*) is
a solution of the Py-LCP (1.1).
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Proof. Similar to [16], It is not difficult to show that the function H : R?**! —
R?"*+1 defined by (2.2) is a weakly univalent function. Because Assumption 3.1
implies that the inverse image H~1(0) is nonempty and bounded. Therefore, by
Theorem 2.5 in [31], we obtain that the sequence {z*} is bounded and hence it has at
least one limit point, denoted by z* = (x*, y*, u,). Now we need to prove H (z*) =
0. Suppose to the contrary that H (z*) # 0. Then we have || H (z*)|| > 0. By Lemma
3.2, we get u, = 0 and hence o, — 0 as k — oo. Subsequently, without loss of
generality, we assume {z*} converges to z*. (2.7) implies that lim;_, ., A, = 0 by
0<pB <land ||H(zY| > 0. Set t; := A/8. Then, on one hand, it follows from
(2.7) that

IHE +u A > [1— A —onllHEY. (3.5)
Letk — oo in (3.5), by Lemma 2.1 (a), we have

H()TH' (29)Az" > —BIIH &), (3.6)
On the other hand, by (2.6), we have

HE)'H (Z)A = —|H (@)% (3.7)
It follows from (3.6) and (3.7) that

—IHE)? > =BIH I (38)

Since ||H(z*)|| > 0, (3.8) implies that 8 > 1, which is contracted with the fact
B < 1. Therefore, we have H(z*) = 0. Hence z* is a solution of (2.4), which
proves the conclusion. a

4. Global Linear and Local Quadratic Convergence

By Theorem 3.3, we know that Algorithm 2.1 generates a bounded iteration
sequence {z* = (x*, y*, up)}. Let 2 = (x*, y*, ) be an accumulation point of
{z*}. Then, it follows from Theorem 3.3 that u, = 0 and (x*, y*) is a solution
of the Py-LCP (1.1). To establish the rate of convergence for Algorithm 2.1, we
assume that (x*, y*) satisfies the nonsingularity condition but may not satisfy the
strict complementarity. Note that we need the nonsingularity assumption holds for
only one accumulation point of the iteration sequence {z*}.

THEOREM 4.1. Suppose that Assumption 3.1 issatisfied and z* = (x*, y*, uy) is
an accumulation point of the iteration sequence {z* = (x*, y*, ui)} generated by
Algorithm 2.1. If all V € d H(z*) are nonsingular. Then,
(i) the whole sequence {z*} convergesto z* and A, = 1 for all sufficiently large
k;
(i) {ur} and {z*} converge locally quadratically to 0 and z*, respectively;
(i) {r} converges globally Q-linearly to zero.
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Proof. By Theorem 3.3, H(z*) = 0. Because all V € d H (z*) are nonsingular,
which implies that (1.1) has a unique solution, by Theorem 3.2, the whole sequence
{z¥} converges to z*. Moreover, it follows from Proposition 3.1 in [25] that for all
ZF sufficiently close to z*, we have

IH' )7 = o). (4.1)

From Lemma 2.1 (b), we know that H (-) is strongly semismooth at z*. Hence, for
all z* sufficiently close to z*, we have

|H(Z*) — H(z") — H' () - 29I = o(lz" — *19). (4.2)

On the other hand, Lemma 2.1 (b) implies that H (-) is locally Lipschitz continuous
near z*. Therefore, for all z* sufficiently close to z*,

IH &) = oz* — z*ID. (4.3)
Thus, (4.3) implies
ok = O((m)® = O(IHEZH® = o(lIz* — 2*11. (4.4)

Then, by (4.1), (4.2) and (4.4), we obtain that
lz* + Az =zl < |1H' ) 7HIH ) = H (29— H' () (2" =) | +orpu]
= O(llz* = z*[1%.
(4.5)

By following the proof of Theorem 3.1 in [24], for all z* sufficiently close to z*,
we have

Iz = 2"l = O(IH ") = H(Z)I). (4.6)
Then, because H (-) is strongly semismooth at z*, for all z* sufficiently close to z*,
we have

IH & + A = [H @ + Az — H(Z)||
= Ol + A" = 2D = O (|l — z*[I) (4.7)
= O(|H ") — H@ZHI®) = O(IH @) ).

By Theorem 3.3, lim,_ ., ||[H(z")| = 0. Hence, (4.7) implies that when & suf-
ficiently large, A = 1 can satisfy (2.7), which proves (i). Therefore, for all z*
sufficiently close to z*, we have from (i) that

M=+ AL g = o = 0(Ud),

which, together with (4.5), proves (ii).
_Next, we prove (iii). By the fact o < o and (i), there exists a positive integer
k > 0 such that

Ukrl = Oxly < opg, Vk > k. (4.8)
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Since A := min{i|k < k} > 0, we have
s = [1— (@ —ohdpe <[ — A —0)A/2lui, Yk < k. (4.9)

Let C := max({o, [1—(1—0)4/2]}, then we have C € (0, 1) by the facts o € (0, 1)
and A > 0. Thus, (4.8) and (4.9) implies

Uir1 < Cuy, forallk > 0.

Hence, {1} converges globally Q-linearly to zero. O

5. Numerical Results

In this section we present some numerical experiments of Algorithm 2.1 by
using a MATLAB code. Throughout the computational experiments, the paramet-
ers used in the algorithm were 8 = 0.25, § = 0.75, 0 = o = 0.0001. Take
or = g forall k > 0. The starting point (x°, y°) € R?* has been chosen as
follows: let x° € R" as in the examples and set y° := Mx% + ¢. In Step 1, we
used || H (z*)|| < 1078 as the stopping rule. The numerical results are summarized
in Table 1 for different problems. In Table 1, Exam denotes the number of test
examples, DIM denotes the number of the variables in the problems, x° denotes
the starting point, IN denotes the total number of iterations, HO denotes the value
of ||[H (%) and HK denotes the value of || H (zX)|| when the algorithm terminates.
In the following, we give a brief description of the tested problems.

EXAMPLE 1. (The Murty Problem) This is the fifth example of Kanzow [20] in
Section 5 with n variables. The solutionisx* = (0, ... ,0, D)7, y* =(1,...,1,0)7.
For this example, Lemke’s complementarity pivot algorithm and Cottle and Dan-
zig’s principal pivoting method are known to run in exponential time. This example
was also tested by Kanzow [21] and Burker and Xu [3]. As in [21, 3], we tested
this problem by using x° = (1,..., 1) as a starting point. The tested results are
listed in Table 1.

EXAMPLE 2. (The Fathi Problem) This is the sixth example of Kanzow [20] in
Section 5 with » variables. The solutionisx* = (1,0, ... ,0)7,y* = (0,1,... , DT.
For this example, Lemke’s complementarity pivot algorithm and Cottle and Dan-
zig’s principal pivoting method are known to run in exponential time. This example
was also tested by Kanzow [21] and Burker and Xu [3]. As in [21, 3], we tested
this problem by using x° = (1,...,1) as a starting point. The tested results are
listed in Table 1.
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Table 1. The numerical results of Examples 5.1-5.4

Exam DIM x0 HO IN HK
5.1 8 @,...,1 5.2915 2 6.7370e-016
16 7.7460 2 9.5390e-016
32 11.1355 2 1.4260e-015
64 15.8745 2 2.0350e-015
128 22.5389 2 2.6618e-015
256 31.9374 2 3.9968e-015
5.2 8 @,...,1 5.6569 3 5.0040e-009
16 8 4 4.6361e-010
32 11.3137 4 5.0039-009
64 16 6  6.4906e-009
128 22.6274 5  5.0040e-009
256 32 8  1.2949e-014
5.3 8 @...,1 6.6332 2 1.3643e-015
16 8.7178 2 1.7990e-015
32 11.8321 2 3.2660e-015
64 16.3707 2 3.2137e-015
128 22.8910 2 5.3690e-015
256 32.1869 2 7.5307e-015
5.4 5 ©,...,0) 2 2 1.1952e-014
@,...,0 16.3707 2 1.3977e-015
(10, ..., 10) 153.3754 2 1.4207e-015
(100,...,100)  1.5242¢+003 2  1.4207e-015
(1000, ... ,1000) 1.5233e+004 2  1.4207e-015
EXAMPLE 3. The Ahn Problem with n variables.
4 -2 0 0 0 ---0
14 -2 0 0 ---0
M=|01 4 -220 .0/, g = —de.
0.+ -+ .- 0 1 4
The solution is x* = (1.6,1.3, ... ,1.3,1.2,1,0.7)7, y* = (0, ..., 0)". We tested
this problem by using x° = (1,...,1) as a starting point. The tested results are

listed in Table 1.

EXAMPLE 4. This is the fourth example of Kanzow [20] in Section 5 with 5
variables, which has a nondegenerate solution, namely, x* = (1,0,1,1.2,0.4)7,
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y* =(0,1,0,0,0)". We used the same starting points as in [20]. The tested results
are listed in Table 1.

From Table 1, we can obtain the following observations:

e All problems tested have been solved using only a small number of iterations.
Moreover, the numerical results of examples 5.1, 5.2 and 5.4 are significantly
better than those appearing in [3, Section 5], [20, Section 7], and [21, Section
5].

e For each problem tested, we tested it by using different starting point or dif-
ferent dimensions of the problem. However, vary of the number of iterations
is very small.

Our computational results indicate that the proposed new smoothing Newton-type
algorithm works very well for all tested problems in this paper. We expect that the
method can be used to solve practical large-scale sparse problems efficiently.

6. Conclusions

Based on the algorithmic framework in [29] and motivated by the idea in [5], we
have presented a new one-step smoothing Newton method (Algorithm 2.1) for solv-
ing the Po-matrix linear complementarity problem (1.1). Algorithm 2.1 is simpler
than the predictor-corrector-type smoothing algorithms given in [2]. It solves only
one linear system of equations and performs only one line search at each iteration.
Without the strict complementarity, we have shown that Algorithm 2.1 has both
global linear and local quadratic convergence results if the Py-LCP (1.1) satisfies a
nonsingularity condition. In particular, to the best of our knowledge, Algorithm
2.1 is the first one-step smoothing Newton method to have both global linear
and local quadratic convergence. Compared to many previous literatures (e.g.,
[5]), our algorithm has stronger convergence results under weaker assumptions.
The preliminary numerical results given in section 5 indicate that the algorithm is
promising.
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